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Abstract

This paper investigates the fracture problem of a piezoelectric cylinder with a periodic array of embedded circular
cracks. An electro-mechanical fracture mechanics model is established first. The model is further used to the thermal
fracture analysis of a piezoelectric cylinder subjected to a sudden heating on its outer surface. The temperature field
and the associated thermal stresses and electric displacements are obtained and are added to the crack surface to form
a mixed-mode boundary value problem for the electro-mechanical coupling fracture. The stress and stress intensities are
investigated for the effect of crack spacing. Strength evaluation of piezoelectric materials under the transient thermal
environment is made and thermal shock resistance of the medium is given.
© 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

Since piezoelectric materials are very brittle and susceptible to fracture, it is necessary to understand the
fracture behaviors of these advanced materials. On the other hand, mechanical, electrical, and thermal
fields are coupled in most physical problems. Thermal effects in piezoelectric materials could be important
when those materials are used at high or low temperature environments. In a series of their work,
Herrmann and Loboda investigated interface cracks with a frictionless contact zone at the crack tip
between two semi-infinite piezoelectric spaces under the action of a remote electro-mechanical loading
and a temperature flux (Herrmann and Loboda, 2003a,b). Gao et al. (2002) presented an exact solution
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for the problem of an elliptic hole or a crack in a thermopiezoelectric solid. The method used in that paper
was also applied to an elliptical cavity in a magnetoelectroelastic solid under remotely uniform in-plane
electromagnetic and/or anti-plane mechanical loading (Gao et al., 2004). The thermoelastic behavior of pie-
zoelectric solids with defects, such as holes and interface cracks, were considered by Zhang et al. (2002), and
by Qin and Mai (1999). The problem of a 2-D piezoelectric material with an elliptic cavity under uniform
heat flow was investigated by Lu et al. (1998). Studied by Niraula and Noda (2002) was a transversely iso-
tropic thermopiezoelastic material strip containing an edge crack under thermal and electrical loading con-
ditions. Recently, the thermally induced fracture problem for a piezoelectric laminate with a crack subject
to uniform electric and temperature fields was considered by Ueda (2003). A surface crack in a piezoelectric
strip under transient thermal load was investigated by Wang and Mai (2003). The exact solution for a
penny-shaped crack in a piezoelectric medium under steady thermal flux was given by Wang and Noda
(2004). Shang et al. (2003) investigated propagation behavior of an elliptical crack in thermopiezoelectric
material subjected to a uniform temperature. The three-dimensional strain energy density formulation
was used to determine the direction of crack propagation and the shape of the initial fracture increment.
Gu and Yu (2003) considered the anti-plane problem of thermal effect near crack tip region of piezoelectric
material subjected to electrical impact loading by means of the integral transforms and the singular integral
equations.

Although a variety of challenging issues related to certain thermal crack problems in the piezoelectric
materials have been addressed, one of the remaining problems that need to be fully understood is that
of a periodic array of parallel cracks in such media subjected to thermal loading. Past experience suggests
that cracks in a medium may be either a single dominant crack or a roughly regular array of periodic cracks
(Grot and Martyn, 1981; Rizk, 2004; Timm et al., 2003; Erdogan and Ozturk, 1995; Ishihara and Noda,
2001). Therefore, it is important to consider multiple cracking of piezoelectric media.

This paper investigates the thermal fracture of a piezoelectric cylinder with a periodic array of embedded
circular cracks. Both electro-mechanical loads and thermal loads are considered. The crack problem is
solved by means of integral equation technique. Effect of crack spacing on the stress and crack front field
intensity factors are investigated. The thermal shock (transient thermal loading) resistance of a piezoelectric
material is studied for a cylinder specimen subjected to a sudden heating on its outer surface. Some
conclusions are drawn.

2. Electro-mechanical model for a row of infinitesimal periodic cracks

This section develops an electro-mechanical model for a periodic array of cracks in a piezoelectric cyl-
inder (Fig. 1). The analytical model is generalized for any distribution of the electro-mechanical loads on
the crack faces. The cylindrical coordinates r, 0 and z are coincident with the principal axes of the material
symmetry. We investigate an axis-symmetric problem such that all the field variables are functions of the
radial coordinate r and the axial coordinate z only. Hereafter 6 denotes the circumferential coordinate; the
symbols and D denote the stress and electric displacement, respectively; u and w are, respectively, the radial
and axial components of the displacement vector; and ¢ is the electric potential. Constitutive equations for
piezoelectric materials whose poling direction is coincident with the positive z-axis are (Lin et al., 2003):

Ou u ow 0
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ou u ow 0 X
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Fig. 1. A periodic array of embedded circular cracks in a piezoelectric medium (2¢: crack spacing; a: crack radius).
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or r 0z 0z
where c¢;;, e;; and ¢;; are elastic constants, piezoelectric constants and dielectric permittivities, respectively; 4;;
are the temperature—stress coefficients; f35 is the temperature—electric displacement coefficient; 7" is the tem-
perature change in the medium.
In the absence of body forces and body charges, the equilibrium equations for the piezoelectric media are
(Lin et al., 2003):
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which can be expressed in terms of displacements and electric potential with substitution of the constitutive
Eq. (1). The system governing Eqs. (1) and (2) must be solved under prescribed electro-mechanical bound-
ary conditions.

2.1. Electro-mechanical boundary conditions

Generally, the crack surfaces are traction free. However, because the air or vacuum allows some pene-
tration of electric flux through the crack interior, the electric displacement inside the crack may not be zero
and it’s normal component (along the z direction) is denoted as d. Then, the mixed boundary conditions on
the z =0 plane can be stated as follows:

0=:(r,0) = po,(r) = —00(r), D.(r,0) = py,(r) = do(r) — Do(r), r<a, (3a)
w(r,0) =0, ¢(r,0)=0, rza, (3b)
where ao(r) and Dy(r) are the values obtained from the solution without any cracks. Because of symmetry

and periodicity, the problem can be considered for an infinite disk —¢ <z < ¢, subjected to the following
homogeneous boundary conditions:

6,.(r,—c) =0,.(r,0)=0.(r,c) =0, (4)
w(r,—c) =w(r,c) =0, (5a)
o(r,—c) = ¢(r,c) = 0. (5b)

The solution of the disk is obtained in terms of some unknown coefficients. These unknown coefficients
are then determined from the boundary conditions of the problem through the introduction of a displace-
ment and electric potential discontinuity function vector along the cracked plane (i.e. the z = 0 plane).

2.2. Electro-mechanical fields in the piezoelectric medium

Referring to the constitutive relations and the equilibrium equations for the piezoelectric medium
poled along the positive z-axis (Egs. (1) and (2)), the displacements and electric potential can be expressed
as

u(r,z) aimd) (Sr)
w(r,z) / Z ayndo(sr) p exp(sinz)A, ds, (6)
o(r,z) aznJo(sr)

where J; (i = 0, 1) are the ith order Bessel functions of the first kind, A4,,(s) are unknown functions of s, and
the constants ay,,, d»,,, @3, and the parameter A are determined from

2
ci — cah, (c13+caa)lm (€31 + €15)m Aim
, 2 2 _
(13 +caa)hm  C334, — Cas enid, —eis ay p =0. (7)
) 2 2
(es1 +e15)Anm  end, —es e — el A3

Eq. (7) is an eigenvalue problem consisting of three equations. Nontrivial @, (j = 1,2,3) exist if 1 is a root
of the determinant. In Eq. (7), there are six roots for 4,,. It can be shown that if [/ s (Q1ms Qoms A3) ] 1S A1
eigensolution, then [—im,(alm,—azm,—a3m)T] is also an eigensolution, of Eq. (7).

In what follows, the order of the roots /,, are arranged such that Re(4;) <0, Re(4,) <0, Re(43) <0 and
Ay = —A1, A5 = — o, Jg = — /3. Substituting Eq. (6) into the constitutive equations, the stresses and electric
displacements can be obtained as
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0.(r,z) CinJo(s7)
D.(r,2) / Condo(57) S exp(sinz) Ay ds, (82)
0. (r,z) =l CinJ 1 (sr)
6 00 _
(1, 2) Z / [C4msJo sr) + 28 g Ty (57)] exp(snz)A, ds, (8b)
— r
6 00
D,(r,z) Z 5m / sJ1(sr) exp(sinz)A4, ds, (8¢c)
0

where the constants Cj,, (j=1,...,5; m=1,2,3) are given in Appendix A.

The unknown coefficients 4,, will be determined from the symmetry and periodicity conditions (4) and
(5), as well as the mixed-mode conditions (3). This will be done by introducing an auxiliary function vector
on the cracked plane.

2.3. Satisfying the symmetry and periodicity conditions

In order to consider the mixed-mode boundary conditions (3) on the cracked plane, an auxiliary vector
g2 =(g1,8>)" is defined in the following manner:

3 3
- ZAmaZmy gz(S) = ZAma3m~ (9)
m=1 m=1

It follows from the symmetry condition (4), periodicity conditions (5), and with substitution of Eq. (6) into
Eq. (9), 4,, can be expressed in terms of the displacement discontinuity function g as

A,,,(S) = mej(s)gj(s)v (10)
=1
where b,,;, (m=1,...,6; j=1,2) are known coefficients:
1
by = WBW, Dins3); = eXp(250)~m)b:nj (m=1,2,3), (11)

in which B,,; are the elements of the following matrix:

-1
a dxp a4

C3l C32 C33

Now considering the boundary conditions (3b), it follows that
/ gi(s)Jo(sr)ds=0 (j=1,2) r > a (13)
o
Hence, g; (i = 1,2) have the solutions of the form

gj(s):/()a(bj(l)sin(sl)dl (=12), (14)

provided that lim_,o®{¢) = 0. The functions @{(r) will be determined from the crack face boundary condi-
tions through a system of Fredholm integral equations of the second kind.
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2.4. The integral equations

The system of integral equations can be obtained by substituting Egs. (10) and (14) into Eq. (8a), and
using crack face boundary conditions (3a). It can be shown that
o) a 2
/ Jo(sx) V ssin(st) S Ay ()@,(1)dl|ds = py () (i =1,2). (15)
0 0 —

j=1

The contractions

/1,:/‘(5) = Zcimbmj(s) (ivj = 172)7 (16)

have been made. In order to determine the possible singular behavior of Eq. (15), the behavior of the kernel
[A] for large value of s needs to be examined. It can be seen from Eq. (11) that as s approaches infinity, the
quantities bafs), bs{s) and be[s) are zero, and by(s), by{(s) and b3i(s) are constants: b, (s = 00) = B, in
which (m =1,2,3) and (j = 1,2). By adding and subtracting the asymptotic values b,,{occ) to and from b,,,(s)
in Eq. (16), Eq. (15) can be re-written as

/ Jo(sx) / ssin(sl) ZAO 1)dl ds+/ Wy (e, 1) @;(r) dr = py(x), (17)
0 0
where (i = 1,2), A?] are material constants:
3
A?j = Z Cimij (18)
m=1
and ; are functions of x and r:
2sexp(2scly) .
B —_ . 1
Z CinBuy /0 Jol0) S S sin(or) ds (19)

For ¢ — oo (infinite crack spacing) or r — y, the above Eq. (19) gives y;; = 0. Accordingly, integral Eq. (17)
reduce to the single crack solution when ¢ approaches infinity.
Referring to Appendix B for details, the integral Eq. (17) can be further simplified to

2 a
S| e+ [ Kinemer] - o, 0)
=1
where (i =1,2), and the integral kernels Kj; and the generalized loads Q; are
4 S > exp(2schy) . .
r) = E ; Cimij/O m SIH(SV) Sln(Sl) ds (21)
and
2 ! XPo; ()
0.(l)== / ——=dx, 22
D=2 viee 22

respectively.
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2.4.1. Stress and electric displacement intensity factors

Eq. (20) is the desired system of integral equations which can be solved by a standard method (e.g. by
collocation technique). Since Eq. (22) contains an unknown constant d,, which is the normal component of
the electric displacement vector inside the crack (see Eq. (3a)). To obtain dj and @; (j = 1,2) from Eq. (20),
an additional assumption is needed. This will be discussed in the following Section 2.5. Once d, and ®;
(j=1,2) are known, the full-field solution is obtained. From the expressions

ki =lim+/2(x — a)o..(r,0), kp = lim \/2(x — a)D.(r,0), (23)
the stress and electric displacement intensity factors are obtained as
1 & 1 &
k] _ AI .(15.(a)7 kD = —— Azfp(a) (24)
\/5 jz:]: T \/c_l ; T

The normal displacement and electric potential on the upper surface of the crack can be determined from
Egs. (6), (10) and (14), which are

(oot = 1 ==l b -

2.4.2. Stress and electric displacement

Two quantities of considerable practical interest are the stress ¢..(r,z) and the electric displacement
D_(r,z), as it may have a bearing on further cracking on cell division. It is expected that the overall stress
is maximized at the plane z = ¢ (Erdogan and Ozturk, 1995; Schulze et al., 1998). Substituting Eqgs. (10) and
(14) into Eq. (8a), the stress and electric displacement at the plane z = ¢ can be obtained as follows:

{GD((:;) } —2 m: { gm } /OaRm(r, 1) jz::ijq5j(Z)dl, (26)

where

R.(r,1) = /OxJo(sr)

It should be note that Eq. (26) would give the stress and electric displacement for the perturbation prob-
lem solved under the conditions (3)—(5). To obtain the correct stress and electric displacement, the solution
of the un-cracked medium under prescribed external loads must be added to that given by Eq. (26).

sexp(sciy,)

1 — exp(2sci,) sin(s?) ds, (27)

2.5. Crack face electric boundary conditions

Generally, in piezoelectric fracture, two kinds of idealized electrical boundary conditions on the crack
faces are extensively used. One commonly boundary condition is the specification that the normal compo-
nent of electric displacement on the crack surfaces equals zero. This electrical boundary condition ignores
the permittivity of the medium inside the crack. Another commonly used boundary condition treats the
crack faces as being electrically contacted.

2.5.1. Electrically impermeable cracks

The simplest way to solve the problem is to consider the crack as electrically impermeable and the elec-
tric displacement inside the crack is zero. Thus, in Eq. (22) dy, = 0; and Eq. (20) can be solved by using a
collocation technique where the functions @; are found at discrete points by matching the discrete values of
the nonhomogeneous terms of the integral equations.
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2.5.2. Electrically contacted cracks

Section 2.5.1 gives the solution for the electrically impermeable crack face boundary condition. In that
extreme case the crack face is free of electric charges and the equivalent crack face electric displacement
load is pog = —D( where D is obtained from the solution of the same medium without cracks. Here we con-
sider another extreme case in which the electric displacement on the crack faces is unknown but the electric
potential jump across the upper and lower surfaces of the cracks is zero (i.e., @, = 0 so that the crack faces
are at an electrically contacted state). The only unknown for this problem is ¢; which can be determined
from the first equation of Eq. (20):

¢ 2 1 xpy ()
0 _ 01
A11¢1(1)+\/0 Kll(l,r)cpl(r)drfg A —127x2 dx. (28)

It can be shown that the applied electric loads have no effect on the solution of the problem. The stress and
electric displacement intensity factors are obtained from

1 A
k] Z—%/ln@](a), kD:A_Tikl. (29)
The displacement on the upper surfaces of the electrically contacted cracks is the same as the first of Eq.
(25). For an electrically contacted crack, the electric potential jump across the cracks is zero and the electric
charges will be accumulated on the crack surfaces. The electric displacement on the crack faces d, can be
obtained from the second of Eq. (20). It follows that d, satisfies the equation

‘ 2 " xpp(x)
0 _ = 02
A21@1(1)+/0 K21(l,r)¢1(r)dr—n A 12_x2 dx, (30)
where pg, = dy — Dy. Eq. (30) is an Abel type integral equation. With its solution we obtain:
do() = Do) + 2 L [ 10 o)+ [ Kor(t, 1)y () |t 31
0(x) = Do(x) +— 7 NV (1) + i 21(8,7) @ (r)dr|dt. 31)

The electric displacement inside the crack d, consists of two parts. The first part is the first term on the
right-hand-side of Eq. (31), which is equal to the applied electric displacement load D,. The second part
is the second term on the right-hand-side of Eq. (31), which is produced by the applied mechanical load
oo on the crack faces.

3. Numerical results and discussion

In this section, some sample results are given for a PZT-4 piezoelectric ceramic. Material properties are
(Giannakopoulos and Suresh, 1999): ¢;; = 139 GPa, ¢13 = 74.3 GPa, ¢33 = 115 GPa, ¢4y = 25.6 GPa, ¢, =
77.8 GPa, e3 = —5.2 C/m?, e3;=15.1 C/m%, e;5=12.7C/m?, ¢); = 64.61 x 107'° F/m, and €33 = 56.2 x
107 F/m. The temperature—stress coefficients are denoted as 4;; and 133, and the temperature—electric dis-
placement coefficient is denoted as f;. In the following Sections 3.1-3.3, a constant stress load
6..(r,00) = gy, a constant electric displacement load D.(r,o0) = Dy, and a transient heating on the outer
surface of a cylinder are considered, separately.

3.1. A constant axial stress load o..(r,00) = g applied at infinity

Fig. 2 gives the normalized stress intensity factors with crack spacing. Electrically impermeable crack
and electrically contacted crack solutions are plotted. To explore the effect of piezoelectric coefficients,
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Normalized half crack spacing c/a

Fig. 2. Stress intensity factors produced by a far-field constant stress load ay. (kg = %(ro\/&).

the un-coupled solutions (i.e. solution for e; = 0) are also displayed. Obviously, the crack face electric
boundary condition assumptions have little influence on k;. However, the effect of piezoelectric coefficients
on the stress intensity factor is not neglectable. Such a fact suggests that the stress intensity factors for tra-
ditional materials may not be directly used to the piezoelectric materials and fully coupled analysis is re-
quired. For relatively large values of crack spacing (i.e. for large values of c¢/a) the effect of piezoelectric
effect is not pronounced. Moreover, the results indicate that multiple cracking has a significant tendency
to release the stress intensity factors. In each case, the normalized value of k| decreases monotonously with
decreasing crack spacing from unit to zero.

Depicted in Fig. 3 are the stress o..(0, ¢) for different values of ¢/a. Once again, the electrically contacted
crack assumption and the electrically impermeable crack assumption almost give the same stress prediction.
However, the effect of piezoelectric coefficients on the stresses is very significant. Unlike the stress intensity
factor, the dependency of the stress on the crack spacing is more complicated. It can be shown that there
exists a maximum value of the stress, which multiple cracking can release. The value of

Tmin (0, ¢) = 0.26, (32)

in the periodically cracked medium is achieve when ¢ = 0.5a.

Some additional results for the electric displacement intensity factors and electric displacements are
given in Figs. 4 and 5, respectively. Both kp and D, strongly depend on the crack face electric boundary
condition assumptions, especially for small values of crack spacing. Note that in the case of electrically con-
tacted cracks the electric displacement intensity factors can related to the stress intensity factor solution
through Eq. (29), which for the present material, is

kp = 2.501 x 10 "%;. (33)

For a single crack in the medium, the electric displacements on the crack faces are zero which do not de-
pend on the crack fact electric boundary conditions. kp for a single impermeable crack is also zero. These
facts suggest that the stress and electric displacement are only un-coupled at cracked plane ahead of the
crack front when the cracks are infinitesimal and are sufficiently largely spaced.



J.-C. Han, B.-L. Wang | International Journal of Solids and Structures 43 (2006) 2126-2145 2135

1.0
s 081 Electrically impermesble
) crack solution
= ]
< ]
o 0.6 1 Electrically contacted
@ crack solution
1]
8 04
é 1 Uncoupled (g;=0) solution
5 ]
0.2 4
0.0 +—+——r—r—+——"7——7
0.0 0.5 1.0 1.5 2.0 25 3.0

Normalized half crack spacing c/a

Fig. 3. Stresses produced by a far-field constant stress load oy.
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Fig. 4. Electric displacement intensity factors produced by a far-field constant stress load ao. (ko = 2 22 6+/a).

T €33

3.2. A constant axial electric displacement load D.(r,o0) = Dy applied at infinity

Figs. 2-5 are solutions for a constant mechanical load (. In most cases, the electrical load and mechan-
ical load are applied simultaneously. Since the electrically contacted cracks do not obstruct any electric
fields, field intensity factors are zero for electrically contacted cracks under electric loads. Therefore, only
the impermeable crack solutions need to be considered. Figs. 6 and 7 give the stresses and stress intensity
factors, and the electric displacements and the electric displacement intensity factors, respectively, for an
applied electrical displacement load D,. Explanations for the effect of the crack spacing on the intensity
factors are similar to the mechanical load case. Based on the analytical results, it is possible to show that
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Fig. 5. Electric displacements produced by a far-field constant stress load (. (Dy = 22 gy).
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Fig. 6. Stresses and stress intensity factors produced by a far-field constant electric displacement load Dy. (69 = %DO; ko =2 %‘Do Va).

the applied electrical load can only produce very small stress and stress intensity factor. We discuss this
quantitatively in the following.

If the applied stress and electric field are prescribed, the equivalent electric displacement load can be
obtained from

2 2
_ C11€33 — C13€3] Cl1€33 — 2ci3esiess + C33€3;

Dy 5—00 + | €33 + 5 Ey, (34)
C11€33 — C73 C11C33 — C73
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Fig. 7. Electric displacements and electric displacement intensity factors produced by a far-field constant electric displacement load D.

(ko =2Dy/a).

which is (2.3450¢ + 100.61E,) x 10~'° C/m? for the present piezoelectric ceramic. Suppose there is a suffi-
ciently large electric field £ = 1 MV/m applied along the negative z direction on the medium, then the max-
imum stress produced by this electric field can be found from the results in Fig. 6. It can be shown that the
maximum stress and stress intensity factor

Omax = 0.0144 x ;Z—; x 100.61 x 10° ~ 0.4 MPa (35a)
and
2 151 .
ki max =~ 0.00722 x X565 X 100.61 x 10°/a ~ 0.124 MPa+/a, (35b)

appear approximately at ¢/a =1 and c¢/a = 0.58, respectively. Comparing with the strength limit and the
fracture toughness of the common materials, these values are not significant. (Note that for a sufficient large
crack radius, say, for example, a = 1 cm, Eq. (35b) gives k| pax =~ 0.0124 MPa/m, which is a very small
value.)

3.3. A transient heating on the outer surface of a piezoelectric cylinder

The problem considered in this subsection is a piezoelectric cylinder described in Fig. 8. The z-axis is
oriented in the poling direction of the piezoelectric medium. The cylinder has a radius b and is infinite along
its axial direction. Suppose the piezoelectric medium is initially at a uniform temperature zero, and its outer
surface undergoes a sudden temperature variation 7. That is

T(I",O):O, T(bat):TOH(t)a (36)

which defines a thermal shock condition on the outer surface of the medium where H(¢) is the Heaviside
function. Since the external temperature is only a function of the radial coordinate r and the time variable
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z 4

2b

Fig. 8. A piezoelectric cylinder subjected to a sudden heating on its outer surface.

t, the heat conduction is also one-dimensional along the r direction. For such a one-dimension heat con-
duction, the temperature field 7 can be found from thermal stress textbook as

t
T(r,t) =Ty — T‘)Z /,,Jl ) Jo(/,, b) exp (—V,z, £>, (37)

where to = pc,b*/ks, J; (i = 1,2) are the ith Bessel functions of the first kind, and y, are the roots of the equa-
tion Jy(y) = 0, k» is the coefficient of thermal conductivity of the medium in the radial direction, p the den-
sity, and c, the specific heat. It can be seen immediately that the thermal diffusivity k»/pc, dictates the time
scale for transient temperature distribution, but does not affect the level of the temperature.

3.3.1. Electro-elasticity fields in the piezoelectric medium in the absence of cracks
From the overall equilibrium of the cylinder, the total force and electric charge along the axial direction
should be zero. The axial thermal stress oy and the axial electric displacement D, can be obtained as

(- Lo [ 2o (-52), -

where

c - e
A337A33*c—f/1117 53 ﬁz*i}n, (39)

hereafter c;, e; and e;; are elastic constants, piezoelectric constants and dielectric permittivities, respectively;
A;; are the temperature-stress coefficients; f3 is the temperature—electric displacement coefficient; 7 is the
temperature change in the medium.
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Eq. (38) indicate that among many thermo-electro-mechanical parameters in the piezoelectric materials,
the parameters that govern the transient thermal stress and electric displacement levels in the cylinder are
identified as /33 and f3;. The time scale for the transient thermal stress and electric displacement state is gov-
erned by the thermal diffusivity pc,/k», which does not affect the levels of thermal stresses and electric
displacements.

The evaluation of the dimensionless thermal stresses and electric displacements are plotted against the
dimensionless Fourier number F, = #/t,, where t, = pcvbz/kz, in Fig. 9 for different positions in the cylinder.
For any given position in the cylinder, the transient thermally induced electro-mechanical field is zero ini-
tially, increases to a peak as time goes on, and then decreases to zero as time approaches infinity. It is clear
that if 7y > 0, the region near the surface of the cylinder experience a compressive stress while a tensile zone
is developed at the center of the cylinder. The maximum compressive stress is attained at the surface and the
tensile stress is largest at the center of the cylinder. The maximum values of

oo = =T, Dy = —B;T (40a)
are achieved at the surface of the cylinder at 7 = 0. The maximum tensile stress and the electric displacement
gy = 0.471133710, Do = 047133T0 (40b)

are attained at the center of the cylinder at a time #/f, = 0.0761. These expressions are valid for any of the
piezoelectric materials.

Under a cooling condition (7 < 0), at any location of the cylinder, the stress and electric displacement
will change their signs from the heating condition. Hence the surface of the cylinder will become tensile and
the center will be compressive. The magnitudes of the thermal stresses and electric displacements subjected
to a cooling will be the same as those in a heating condition.

3.3.2. Field intensity factors, stresses in the cracked cylinder

Since the above analysis shows that under the heating condition, the cylinder has the largest axial tensile
stress at its center, while the axial stress at its outer surface is compressive, it is then expected that a row of

05 - r/b=0

0.0 0.1 0.2 0.3 0.4
t/to

Fig. 9. Distribution of the axial thermal stress ao(r,#) and electric displacement D(r,#) at selected locations r/b. (9 = 43370,
Dy = B3T).
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infinitesimal cracks may initiate at the center of the cylinder under the heating condition (since we are inter-
ested in crack initiation behavior, the assumption of infinitesimal cracks are reasonable). Cracks grow
unstably until they enter the compressive region. The problem can be synthesized from the general solution
for a row of embedded cracks in a cylinder, with crack fronts located at r = a, as shown in Fig. 1. Since the
crack planes are normal to the outer surfaces of the cylinder, they do not perturb the transient temperature
distribution in this arrangement, determination of the temperature distribution and the resulting thermal
stresses and electric displacements for the un-cracked medium would be quite straightforward. The stress
and electric displacement given by Eq. (38), with opposite signs, are added to the crack surface mechanical
and electrical loads in the quasi-static problem. The problem will then be solved with the general electro-
mechanical model developed in Section 2.

Equivalent crack face applied loads

Since //b is small, the function sin(y, i/b) equals 7y, 1/b. It follows from Egs. (38) and (22) that:

2 ! rag (ry1)

QI(Z)Z_E,O ﬁdr:/{33Tolf(t), (413-)
2 lrdo(r,t) 2 [rDo(r,t) 2 [rdo(r,t) .
n== [ D g2 [ D g 2 [ TOVD G BT (), 41b
= |y VE=r T T ah VER Y Ty v p T o
where
4.1 , 1 1
t) =— =exp|—v,—|2——7.l, 42
/) n;yf, p( /”to>[ Jl(vn)y"} )

is a function of time 7 and is independent of material properties. Note that in the problem under consider-
ation time ¢ enters into the analysis through Q,(/) only. The function f{¢) is negative for all values of z. Its
maximum absolute value is

JSmax = 0.3, (43)

which is attained at the time #/fy = 0.0761. Once Q; are obtained, the integral Eq. (20) can be solved and the
stress and electric displacement intensity factors can be calculated from Eq. (24), and the stress and electric
displacement at the z = ¢ plane can be calculated from Eq. (26).

Stress and stress intensity factors

As pointed out in Sections 3.1 and 3.2, the stress intensity factor k; caused by an electric displacement
load is negligible. Further, the values of k, are almost identical for electrically impermeable cracks and for
electrically contacted cracks. Therefore, only thermally induced stress load needs to be investigated.

In Fig. 10, the normalized stress intensity factors k = k;/ko, where ko = (2/n)233T\/a, are plotted
against the dimensionless time #/1,, for selected normalized crack spacing c/a, where a is the crack radius.
At any given c/a, the stress intensity factor increases from an initial zero value with time, displays a peak
value and then decreases to zero as time approaches infinity. This means that the thermal stress intensity
factors occur only at transient state and that their steady values are zero. The peak values for all values
of the crack spacing appear at a same time #/fo = 0.0761. Further, multiple cracking has a tendency to re-
duce the transient thermal stress intensity factors. It is interesting to note that when c¢/a = 0.25, the stress
intensity factor kymax = 0.218k¢; a value which is 47% of the maximum stress intensity factor for a single
isolated crack in infinite media, which is k.« = 0.470k.

Fig. 11 displays the normalized thermal stress ¢.. at the center of the piezoelectric cylinder (i.e. at
(r,z) =(0,c)). For each given crack spacing, o.. has a peak value, which appear at ¢/fo = 0.0761. Once
again, increasing crack density reduces the thermal stress level considerably. Note that when ¢/a = 0.5,
the stress gmax = 0.09740¢; a value which is only 21% of the maximum stress for a single isolated crack
in infinite media, which is 0, = 0.4700,.
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0.5+
1 Single crack (c=infinity)

Normalized stress intensity factor ki/kg

0.0 0.1 0.2 0.3
t/to

Fig. 10. Stress intensity factors caused by the thermal stress load as a function of time. (ko = (2/%)33To+/a).

05 Single crack (c=infinity)
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0.0 0.1 0.2 0.3

tho

Fig. 11. Stress 0..(0,c) caused by the thermal stress load as a function of time (cy = 433 7).

Finally, Fig. 12 plots the peak values of the stresses and the stress intensity factors for different crack
spacing. As pointed out above, these peak values appear at the same time /7, = 0.0761.

3.3.3. Thermal shock resistance studied from the piezoelectric cylinder specimen

Thermal shock represents a rapid temperature change in a medium. Thermal shock resistance is a major
issue in the design of engineering ceramics for thermal applications. In evaluation the thermal shock
resistance of engineering materials, two criteria are usually used: (i) maximum local tensile stress equals
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0.5 7 Normalized peak stressintensity factor: ki/ko

041

0.3

0.2

0.1 _ Normalized peak stress: 6, (0, ¢)/cy
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cla

Fig. 12. The peak values of the stress and the stress intensity factor, which appear at t = 0.0761¢y (6o = A33T0; ko = (2/1r)233T 0\/@).

the tensile strength of the ceramic, and (ii) maximum stress intensity factor equals the fracture toughness of
the ceramic.

From the numerical results in Fig. 12 we know that when there is only a single crack (i.e. ¢ is infinity), the
maximum stress and stress intensity factor in the piezoelectric cylinder are

Omax = 0470233T0 and k1 = 0470(2/75)132710\/57 (44)

respectively. For multiple cracking, the stress and stress intensity are less severe. Therefore, failure predic-
tion made from Eq. (44) is conservative.

A stress-based failure criterion for thermal shock is that the maximum thermal stress that appears on the
center of the cylinder o, attains the value oy, which is the strength limit of the piezoelectric medium. The
maximum temperature jump sustainable by 7. follows from the first of Eq. (44) as

T, =T = 21320 (45)
33
Eq. (45) represents the minimum temperature jump sustainable by the medium based on the stress—failure
criterion. 7, does not depend on the crack size, and are valid for all materials.

As pointed above, the stress intensity factors for the electrically impermeable cracks and the electrically
contacted cracks are same. Therefore, if the stress intensity factor is used as a failure criterion for piezoelec-
tric ceramics, there is no need to consider the electrical boundary conditions on the crack faces. For the
fracture-based failure criterion, the maximum thermal stress intensity factor k,,, must equal the fracture
toughness of the ceramic k.. From the second of Eq. (44) we know that

klc
Jyn/a
Eq. (46) represents the minimum temperature jump sustainable by the medium based on the fracture—
failure criterion. Clearly, T, has a strong dependency on the crack radius. 7, decreases as a increases.

Consideration of Egs. (45) and (46) reveals that the admissible temperature jump is less for fracture—
controlled failure than for stress—controlled failure, at a sufficiently large crack radius. A transient crack

Tc _ T(f:racture =334

(40)
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size a; exists for which T is equal for fracture-based failure and stress-based failure. Then, upon equating
T. values for the stress-based criterion (45) and for the fracture-based criterion (46), it is found that

2
a ~ 2.5 (K1C> . (47)

Ob

Eq. (47) indicates that a piezoelectric material with crack size a, has the same thermal strength according to
the stress criterion and the fracture criterion. The fracture-based criterion is conservative for cracks sized
above a,, the stress-based criterion is conservative for cracks sized below a;.

4. Conclusions

This paper focused on the analysis of stress and intensity release by multiple cracks in piezoelectric media
subjected to electromechanical and/or transient thermal loading conditions. The poling direction of the pie-
zoelectric plate is perpendicular to the crack planes. An electro-mechanical model is developed for the inter-
actions of a row of cracks periodically located in a piezoelectric material cylinder.

The crack face electrical boundary conditions have little influence on the stress intensity factors, whereas
the effect of piezoelectric coupling coefficients (e;) is essential for multiple cracking.

The magnitude of the transient thermal stress in the cracked medium depends on a number of param-
eters. Among these parameters, the thermal stresses and the thermal electric displacements in an un-cracked
piezoelectric plate are only controlled, respectively, by equivalent parameters A3; and f3;, which are defined
in Eq. (39). The maximum stresses and electric displacements are, respectively, oy = —A337, and
Dy = — BT, at the outer surface of the cylinder, and oy = 0.47123;T and Dy = 0.4715,T, at the center
of the cylinder.

The stresses and stress intensity factors can be released considerably by multiple cracking. Thermally in-
duced stress and electric fields, and the associated thermal fracture mechanics problem for a piezoelectric
cylindrical specimen have been obtained theoretically for a periodic array of embedded circular cracks. A
transient crack radius ¢, is obtained for which the admissible temperature jump is equal for fracture-based
criterion and stress-based criterion. The admissible temperature of a piezoelectric ceramic cylinder with
cracks smaller than @, should be evaluate by the stress-based criterion, a cylinder with cracks larger than
a; should be evaluated by the fracture-based criterion.
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Appendix A

Material constants C;,(j=1,...,5; m=1,2,3) are as follows:
Cim = C13a1m + C33AnGom + €334 @3,
Com = €311, + €33nom — €33 /3y,
C3m = Caaldom@iy — Ca4Qoym — €153y,

C4m = C1Am T C134AmA2m + e3lima3ma

> > > >
LEL2R =

CSm = e15AmA1m — €152, + €113, -
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These coefficients have the relationship:

Cigry = Criy Coyiy = Coiy G4y = —Csiy Cariy = Caiy, Csy = —C; (i=1,2,3).

(A.6)
Appendix B
Integrate the left-hand-side of Eq. (17) by part, we obtain
a a ¢
/ ssin(sl)@;(1)dl = — cos(sa)P;(a) +/ cos(s/) d dl(l> di. (B.1)
0 0
Substituting Eq. (B.1) into Eq. (17) and using the integral identity (Gradshteyn and Ryzhik, 1965):
1
o —_— /
/ COS(SI)J()(S)C) ds = 2 — 12’ x> 1, (BZ)
0 0, x <1,
we obtain
S [ |2 0 ars [ ar = (B3)
o (e, r) r = pu(x .
j=1 " Jo I dl ’ ’
It is well known that the Abel integral equation:
= ———=—dJ, B.4
)= [ A (B4)
has a solution:
2d I xf(x)
sl)=_4 T o (B.5)
Hence, it can be shown from Eq. (B.3) that
ZA X o 2 = 1‘%/ Xs ”)‘D (”)drdx:%/l xpo; (x) d. (B.6)
VI - TJo VIP—x2
By substituting Eq. (19) into Eq. (B.6), and using the result
1 1 : )i
xJo(sx) dr = ] mJo(sml) dm — sin(s/) (B.7)

0 VIP—x2 o V1—m? s
Eq. (20) is obtained.
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